
7 D-A145 805 DYNAMIC OCCLUSION 
ANALYSIS IN OPTICAL FLOW FIELDS(U) 

i/i
IMINNESOTA UNIV MINNEAPOLIS DEP T OF COMPUTER SCIENCE

W B THOMPSON ET AL. MRY 84 TR-84-6 RFOSR-TR-84-8797
UNCLRSSIFIED F49628-83-C-848 F/G 12/1 NL

mi-4m MNNE MM ED

EMEMEMEMEMttt rltt



03.

'--4

NATIONA - UEA __SADAD 16

- U*



-, - - - , o . . -, . . . , -.- , - . - " *. .' . . * . ... - . . .. . . .. . . . . . - . '; , .

Computer Science Department

136 Lind Hall

Institute of Technology

University of Minnesota

Minneapolis, Minnesota 55455

-

'

Dynamic Occlusion Analysis In Optical
Flow Fields

AFOSR-TR-
by

William B. Thompson
- Kathleen M. Mutch

-:; Valdis A. Berzins

.
di:Atributiorj u li:ri i,,

*Technical Report 84-6
May 1984

DTIC

'IBLECTESE 418



" 'Y CLAS"iiATION OF TH;S PAGE-.__ _/..LREPORT DOCUMENTATION PAGE

-- -ORT "' TV CLASSFICAT1ON lb RESTRICTIVE MARKINGS

Y CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT
Approved for public release; distribution

S .SIFICATON I DOWNGRADING SCHEDULE unlimited.

'RMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

TR 84-6 AFOS7.9R. : o79
S.ME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

University of Minnesota I (if applicable)

,__,_ Air Force Office of Scientific Research

DDRESS (City State, and ZIP Code) 7b. ADDRESS (City, State, and ZIPCode)
Computer Science Department Directorate of Mathematical & Information

- 136 Lind Hall Sciences, AFOSR, Bolling AFB DC 20332

Minneapolis MN 55455

-ME OF FUNDINGISPONSORING 8b OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
DRGANIZATION (If applicable)

NOSR j _ _ _F49620-83-C-0140
-,DDRESS(City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT I TASK IWORK UNITTolling AFB DC 20332 ELEMENT NO. NO. NO. ACCESSION NO.

61102F 2304 I A7
TITLE (Include Security Clasification)

" DYNAMIC OCCLUSION ANALYSIS IN OPTICAL FLOW FIELDS.

ER'SONAL AUTHOR(S)
.. William B. Thompson, Kathleen M. Mutch, and Valdis A. Berzins

*TYPE OF REPORT 13b. TIME COVERED 114. DATE OF REPORT (Year, Mont h, Day) S.5 PAGE COUNT
* .Technical IFROM _____TO IMAY 84 121

SUPPLEMENTARY rvOTATiON

COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
rLD IGROUJP ISUB-GROUP

-STRACT (Continue on reverse if necessary arnd identify by block number)

Optical flow can be used to locate dynamic occlusion boundaries in an image sequence.
The authors derive an edge detection algorithm sensitive to changes in flow fields likely
to be assoicated with occlusions. The algorithm is patterned afterh the Marr-Hildreth

- zero-crossing detectors currently used to locate boundaries in scalar fields. Zero-
crossing detectors are extended to identify changes in direction and/or magnitude in a

e: vector-valued flow field. As a result, the detector works for flow boundaries generated

due to the relative motion of two overlapping surfaces, as well as the simpler case of
'otion parallax due to a sensor moving through an otherwise stationary environment. They
then show how the approach can be extended to identify which side of a dynamic occlusion
boundary corresponds to the occluding surface. The fundamental principal involved is that
at an occlusion boundary, the image of the surface boundary moves with the image of the

• occluding surface. Such information is important in interpreting dynamic scenes. Results
• are demonstrated on optical flow fields automatically computed from real imne seeuenes.

_- STRIiUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
-:..-jUNCLASSIFIED/UNLIMITED 0 SAME AS IPT. 0 DTC USERS 4UNCASSFD

a NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) [22c. OFFICE SYMBOL
.Dr. Robert N. Buchal ?02 767- 4939 NM

') FORM 1473, e4 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete.

o 84 9 17UNCLASSIFIED.84 09 17 100



'4-

DYNAMIC OCCLUSION ANALYSIS IN OPTICAL FLOW

FIELDS

William B. Thompson
Kathleen M. Murch
Valdis A. Berzi n

Computer Science Department
University of MinnesotaI Minneapolis, MN 55455

Optical flow can be used to locate dynamic occlusion boundaries in an image
sequence. We dive an edge detection algorithm sensitive to changes in flow fields
likely to be associated with occlusions. The algorithm is patterned after the Marr-
Hildreth zero-crossing detectors currently used to locate boundaries in scalar fields.
Zero-crossing detectors are extended to identify changes in direction and/or magni-
tude in a vector-valued flow field. As a result, the detector works for flow boun-
daries generated due to the relative motion of two overlapping surfaces, as well as
the simpler case of motion parallax due to a sensor moving through an otherwise
stationary environment. We th-e shw how the approach can be extended to iden-

• "tify which side of a dynamic occlusion boundary corresponds to the occluding sur-
face. The fundamental principal involved is that at an occlusion boundary, the
image of the surface boundary moves with the image of the occluding surface. Such
information is important in interpreting dynamic scenes. Results are demonstrated
on optical flow fields automatically computed from real image sequences.

index terms - Visual motion, dynamic scene analysis, optical flow, dynamic occlusion, edge
detection.
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Dynamic Occluion Analysis

1. INTRODUCTION.

An optical flow field specifies the velocity of the image of points on a sensor plane due
to the motion of the sensor and/or visible objects. Optical flow can be used to estimate
aspects of sensor and object motion, the position and orientation of visible surfaces relative
to the sensor, and the relative position of different objects in the field of view. As a result,
the determination and analysis of optical flow is an important part of dynamic image
analysis. In this paper, we develop an operator for finding occlusion boundaries in optical
flow fields. We deal exclusively with dynamic occlusions in which flow properties differ on
either side of the boundary. The operator is effective for both motion parallax, when a sen-
sor is moving through an otherwise stationary environment, and for more general motion in
which multiple moving objects can be in the field of view. The multiple moving object sit ua-
tion is more difficult because boundaries are marked by almost arbitrary combinations of
changes in magnitude and/or direction of flow. The technique is extended so that a deter-
mination may be made about which side of a dynamic occlusion boundary corresponds to
the occluding surface. Such a determination is of great importance for interpreting the
shape and spatial organization of visible surfaces. Results are demonstrated on real image
sequences with flow fields computed using the token matching technique described in [1].
Reliability is obtained by dealing only with methods able to integrate flow field information

~1 over relatively large neighborhoods so as to reduce the intrinsic noise in fields determined
from real image sequences.

2. BOUNDARY DETECTION.

Conventional edge operators detect discontinuities in image luminence. These discon-
tinuities are difficult to interpret, however, because of the large number of factors that can
produce luminence changes. Boundaries in optical flow can arise from many fewer causes
and hence are often more informative. If a sensor is moving through an otherwise static
scene, a discontinuity in optical flow occurs only if there is a discontinuity in the distance
from the sensor to the visible surfaces on either side of the flow boundary [2). Discontinui-
ties in flow will occur for all visible discontinuities in depth, except for viewing angles

-' directly towards or away from the direction of sensor motion. If objects are moving with
respect to one another in the scene, then all discontinuities in optical flow correspond either
to depth discontinuities or surface boundaries, and most depth discontinuities correspond to
flow discontinuities.

* The use of local operators to detect discontinuities in optical flow has been suggested
by others. Nakayama and Loomis [3] propose a 'convexity function' to detect discontinui-
ties in image plane velocities generated by a moving observer. Their function is a local
operator with a center-surround form. That is, the velocity integrated over a band sur-
rounding the center of the region is subtracted from the velocity integrated over the center.

0 The specifics of the operator are not precisely stated, but a claim is made ([3], figure 3) that
the operator returns a positive value at flow discontinuities. (In fact, most reasonable for-
mulations of their operator would yield a value of 0 at the boundary, with a positive value
to one side or the other.) Clocksin [2] develops an analytical analysis of optical flow fields
generated when an observer translates in a static environment. He shows that in such cir-
cumstances, discontinuities in the magnitude of flow can be detected with a Laplacian

* operator. In particular, singularities in the Laplacian occur at discontinuities in the flow.
He also showed that, in this restricted environment, the magnitude of optical flow at a
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Dynamic Occlusion Analysis

particular image point is inversely proportional to distance, and the distances can be
recovered to within a scale factor of observer speed. It is thus trivial to determine which of
two surfaces at an edge is occluding, for example, by siply comparing magnitudes of the
two surface velocities, even when observer speed is unknown.

For this restricted situation in which a sensor moves through an otherwise static world:

flow(.*) = Mil) + (it). (1)

*where at an image point.1*, f low(*) is the optical flow (a two-dimensional vector), f , is the
* component of the flow due to the rotation of the scene with respect to the sensor, f r is
* dependent on the translational motion of the sensor and the viewing angle relative to the
* direction of translation, and r is the distance between the sensor and the surface visible at

1 [4]. For a fixed I , flow varies inversely with distance. Both f , and fI vary slowly (and
* continuously) with E. Discontinuities in f low thus correspond to discontinuities in r.

Furthermore, it is sufficient to look only for discontinuities in the magnitude of f low. This
relationship holds only for relative motion between the sensor and a single, rigid structure.
When multiple movinj objects are present, equation (1) must be modified so that there is a
separate f,) and f,) specifying the relative motion between the sensor and each rigid

* object. Discontinuities associated with object boundaries may now be manifested in the
magnitude and/or direction of f low.

2: Boundary detectors for optical flow fields should satisfy two criteria: 1) Sensitivity to
* rapid spatial change in one or both of the magnitude and direction of flow; and 2) Opera-

tion over a sufficiently large neighborhood to reduce sensitivity to noise in computed flow
fields. It is desirable to achieve the second criterion without an unnecessary loss of -spatial
resolution in locating the boundary or a need for post-processing to reduce the width of
detected boundaries. The zero-crossing detectors of Marr and Hildreth [51 may be extended
to optical flow fields in a manner that achieves both objectives [6]. For scalar fields (eg.
intensity images), zero-crossing edge detection proceeds as follows: 1) Smooth the field using
a symmetrical Gaussian kernel. 2) Compute the Laplacian of the smoothed function. 3)

- . Look for directional zero-crossings of the resulting function. (eg. look for points at which,
along some direction, the function changes sipn.) Under a set of relatively weak assump-
tions, these zero-crossings can be shown to correspond to points of most rapid change in
some direction in the original function. The convolution with a Gaussian provides substan-

-1 tial noise reduction and, in addition, allows tuning of the method for edges of a particular
* scale. Steps 1) and 2) involve evaluating the function V 2G * 1, where G is a Gaussian ker-
* nel, Is is the convolution operation, and I is the original image. The effect of the V 2G

operator can be approximated by blurring the original function with two different Gaussian
kernels of appropriate standard deviation, and then taking the difference of the result. This
formulation results in computational simplifications [7,8] and also corresponds nicely to

* several physiological models that have been proposed for early visual processing.

The effect of this approach is to identify edge points where the intensity of the blurred
image is locally steepest. More precisely, an edge can be defined as a peak in the first direc- F
tional derivative, or as a zero crossing in the second directional derivative. At an edge, the
second directional derivative has zero crossings in almost all directions, but the preferred
direction is normal to the locus of the zero crossings, which is the same as the direction
where the zero crossing is steepest for linearly varying fields [5]. For vector images such as de
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Dyummic Occltulem Analys

optical flow fields, the directional derivatives are vector valued, and we want the magnitude
of the first directional derivative to have a peak.

This extension to two-dimensional flow fields is relatively straightforward. The optical
flow field is first split into separate scalar components corresponding to motion in the x and
y directions. The V 2G operator is applied to each of these component images, and the
results combined into a component-wise Laplacian of the original flow field. This operation
is implemented by subtracting two component-wise blurred versions of the original. With
the proper set of weak assumptions, discontinuities in optical flow correspond to zeros in
both of these component Laplacian fields. At least one of the components will have an
actual zero crossing. The other will have either a zero crossing or will have a constant zero
value in a neighborhood of the discontinuity. If the component-wise Laplacians are treated
as a two-dimensional vector field, discontinuities are indicated by directional reversals in the
combined field. Because of the discrete spatial sampling and a variety of noise sources,
exact reversal is not expected, and a range of direction changes about 180' is accepted. A
threshold on the sum of the vector magnitudes at the location of the flip is used to insure

* that the zero crossing is of significant slope. This is analogous to the threshold on zero
crossing slope which is often used in practice when zero-crossing techniques are used on
intensity images, and serves to filter out small discontinuities.

-J The approximations made by the computations described above will be good if the vari-
ation of the field parallel to the edge is much more uniform than the variation normal to
the edge. For scalar images, exact results will be obtained if the intensity varies at most
linearly along the edge contour [5]. For vector images the field must vary at most linearly in
some neighborhood of the edge contour, so that the assumptions required are slightly
stronger than foT scalar images. Appendix I contains the analysis for the case of vector
images.

Two examples of this technique applied to real images are shown below. In both exam-
ples, the objects are toy animals with flat surfaces, shown moving in front of a textured
background. In figure Ia, the tiger translates parallel to the image plane from right to left
between f rames I and 2. The elephant rises off its front legs between frames I and 2,
effectively rotating about an axis at its hind feet oriented perpendicularly to the image
plane. The elephant also translates slightly to the left parallel to the image plane. The opti-I
cal flow vectors, shown in figure lb, were obtained by relaxation labelling token matching,
as described in [1]. Notice that the flow vectors on the elephant and tiger have approxi-

* mately the same magnitude, but differ in direction. Each component of this flow field was
convolved with approximated Gaussians of standard deviations 3.65 and 5.77. The ratio of

these standard deviations is 1:1.6. The two convolved flow fields were subtracted, and the
resulting vector field was searched for reversals in vector direction. In figure 1c, the points
where reversals were found are shown overlaid on the original flow field, and in figure Id
the points are overlaid in white on the first image of the pair. The edge points form a good

6 boundary between the discontinuous optical flow vector fields (Ic), but because these fields
are so sparse, the edge points match only the approximate locations of the true edges (Id).

In figure 2a, both the tiger and elephant are translating to the right parallel to the

image plane between frames I and 2. The flow field shown in figure 2b was obtained in the
same manner as in figure lb. The direction of the flow vectors on both animals is approxi-
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Figure 2. a) Image pair. b) Optical
flow. c) Detected edge overlaid
onto flow field. d) Detected edge
overlaid onto first f rame of
sequence.
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of the flow fields were obtained with standard deviations of 3.16 and 5.16, a ratio of 1:1.6.
The locations of vector reversals resulting from differencing the two filtered Aids are
shown in figures 2c and d.

3. IDENTIFYING OCCLUDING SURFACES.

When analyzing edges between dissimilar image regions that arise due to occlusion
* . boundaries, it is important to determine which side of the edge corresponds to the occlud-

ing surface. Occlusion boundaries arise due to geometric properties of the occluding sur-
face, not the occluded surface. Thus, while the shape of the edge provides significant infor-

A mation on the structure of the occluding surface, it says little or nothing about the structure
of the surface being occluded. In situations where a sensor is moving through an otherwise
static scene, any significant local decrease in r in (1) increases the magnitude of f low.
Thus, at a flow boundary, the side having the larger magnitude of flow will be closer and
thus will be occluding the farther surface. If objects in the field of view move with respect
to each other, this relationship no longer holds. Surfaces corresponding to regions on oppo-
site sides of a boundary may move in arbitrary and unrelated ways. However, by consider-
ing the flow values on either side of the boundary and the manner in which the boundary
itself changes over time, it is usually possible to find which side of the boundary

*. corresponds to the occluding surface, even though the depth to the surfaces on either side
cannot be determined.

The principal underlying the approach is that the image of the occluding contour
moves with the image of the occluding surface. Figure 3 illustrates the effect for simple
translational motion. Shown on the figure are the optical flow of points on each surface and
the flow of points on the image of the boundary. In figure 3a, the left surface is in front
and occluding the surface to the right. In figure 3b, though the flow values associated with
each surface are the same, the left surface is now behind and being occluded by the surf ace
to the right. The occluding surface cannot be determined using only the flow in the
immediate vicinity of the boundary. The two cases can be distinguished because in figure 3a
the flow boundary determined by the next pair of images will be displaced to the left, while
in figure 3b it will be displaced to the right.

frmTo formalize the analysis, we need to distinguish the optical flow of the boundary itself
frmthe optical flow of surface points. The flow of the boundary is the image plane motion

of the boundary, which need not have any direct relationship to the optical flow of regions
* adjacent to the boundary. The magnitude of the optical flow of boundary points parallel to
* the dirxtion of the boundary typically cannot be determined, particularly for linear sections

of bo. ndary. Thus, we will limit the analysis in this section to the component of optical
flow perpendicular to the direction of the image of occlusion boundaries. As a result, if the
flow on both sides of the boundary is parallel to the boundary, the boundary will still be
detectable, but the method given here will provide no useful information about which sur-
face is occluding.

teWe can now state the basic principal more precisely. Choose a coordinate system in
teimage plane with the origin at a particular boundary point and the x axis oriented nor-

mal to the the boundary contour, with x > 0 for the occluding surface. The camera points
in the z direction, and the image plane is at z = 0. Let f ,(x, y) be the x component of

* optical flow at the point (s , y). Let f 1 be the flow of the boundary itself at the origin.
J~
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(a) (b)

Figure 3. Optical flow at a boundary at two instants in time. (a) Surface to the left is in
S..*,- front. (b) Surface to the right is in front.

Then, for rigid objects,

.. = nim f.(x,O) = f.(00) (2)
U.-. U,0

We will show that this relationship is true for arbitrary rigid body motion under an
orthographic projection. (Perspective projections are locally essentially equivalent to a

U.- '
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Dynamic Occlusion Analysis

rotation plus a scale change, though the analytical analysis is more complex.) The instan-
taneous motion of a rigid object relative to a fixed coordinate system can be described with
respect to a six-dimensional, orthogonal basis set. Three values specify translational velo-
city, the other three specify angular velocity. These six coordinates of motion can be con-
veniently classified into four types: translation at constant depth, translation in depth, rota-
tion at constant depth, and rotation in depth. Translation at constant depth is translation in
adirection parallel to the image plane. Translation in depth is translation perpendicular to
the image plane. Rotation at constant depth is rotation around an axis perpendicular to the
image plane. Rotation in depth is rotation around an axis parallel to the image plane. Any
instantaneous motion can be described as a combination of these four types. For ortho-
graphic projections, translation in depth has no effect on the image. Thus, we need to show
that the above relationship relating boundary and surface flow holds for the three remaining
motion types.

U A point on the surface of an object in the scene that projects into a boundary point in
the image will be referred to as a generating point of the occlusion boundary. The family of
generating points defines a generating contour, which lies along the horizon of the object
with respect to the sensor. For both tran-slation and rotation at constant depth, the generat-
ing contour remains fixed to the occluding surface over time. Thus, the boundary and adja-
cent points move with exactly the same motion. As a result, the projection of that surface

- . flow in the direction normal to a particular boundary point is identical to the projection of
the boundary flow in the same direction. (The result is only strictly true for instantaneous
flow. Over discrete time steps, boundary curvature will affect the projected displacement of
the boundary.)

The analysis of rotation in depth is complicated by a need to distinguish between sharp
and smooth occlusion boundaries, based on the curvature of the occluding surface. The
intersection of the surface of the object and a plane passing through the line of sight to the
generating point and the surface normal at the generating point defines a cross section con-
tour. The cross section contour and the generating contour cross at right angles at the gen-
erating point. Sharp boundaries occur when the curvature of the cross section contour at a
generating point is infinite. Smooth boundaries occur when the curvature is finite.

Sharp generating contours will usually remain fixed on the object surface over time.
(Exceptions occur only in the infrequent situations in which, due to changes in the line of

-* sight with respect to the object, either a sharp boundary becomes smooth or a flat face on
one side of the generating point lines up with the line of sight.) Smooth generating contours
will move along the surface of the object any time the surface orientation at a point fixed to
the surface near the horizon is changing with respect to the line of sight. Figure 4 shows
examples of both possibilities. The figure shows a view from above, with the sensor looking
in the plane of the page and the objects rotating around an axis perpendicular to the line of
sight. In figure 4a, an object with square cross-section is being rotated. Figure 4b shows an
object with circular cross-section.

For sharp boundaries, a surface point close to a generating point in three-space pro-
jects onto the image at a location close to the image of the generating point. The surface
point and the generating point move as a rigid body. For rigid body motion, differences in
flow between the image of two points go to zero as the points become coincident in three-
space. As a result, surface points arbitrarily close to the generating point project to the

%9
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(. ~ ~ generating contour - 4

(a) I(b)
line of sight

Figure 4. (a) Generating contour at a sharp boundary remains fixed to the object surface.
(b) Generating contour at a smooth boundary moves relative to the object surface.

same flow values as the generating point itself.

For smooth boundaries, the situation is more complex. The surface points correspond-
ing to the boundary may change over time, so that points on the surface near the generating
point and the generating point itself may not move as a rigid body. The relationship
described in 2 still holds for rotation in depth, however. The formal proof of this assertion

0. is relatively complex and is given in Appendix Il. (The appendix actually shows that the
limit of surface flow is equal to boundary flow for rotation of smooth objects around an
arbitrarily oriented axis.) Informally, the result holds because the surface is tangent to the
line of sight at the generating point, so that any motion of the generating point with respect
to a point fixed to the surface is along the line of sight. The difference between the motion

* of the surface near the generating point and the motion of the generating point itself is a
vector parallel to the line of sight and hence does not appear in the projected flow. This

a. means that the motion of the boundary in the x direction will be the same as that of a point
fixed to the surface at the instantaneous location of the generating point. The limit pro-.
perty holds because the surface flow varies continuously with z in the vicinity of the gen-
crating point, as long as we restrict our attention to points that are part of the same object.
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To develop an algorithm for actually identifying the occluding surface at a detected
boundary, we will start by assuming only translational motion is occurring. (Violations of
this assumption are discussed below.) Accordia- to equation (2), we need only look at the
flow at the edge point and immediately to either side to determine which side corresponds
to the occluding surface. In practice, however, this is inadequate. Edges will be located
imprecisely in each frame due to a variety of effects. This imprecision is compounded when
the location of edge points is compared across frames to determine the flow of the edge. By
considering the pattern of change in the Laplacian of the optical flow field, however, a sim-

ple binary decision test can be constructed to determine which surface velocity most closely
matches that of the edge. As before, we will use a coordinate system with its origin at the
location of some particular boundary point at a time to, the x axis oriented normal to the
orientation of the boundary, and consider only flow5 , the projection of flow onto the x
axis. In this new coordinate system, positive velocity values will correspond to motion to
the right. We will assume that the flow field in the vicinity of the edge can be approximated
by a step function. The algorithm developed here is unaffected by constants added to the
flow field or by applying positive multiples to the magnitude of flow. Therefore to simplify
analysis, normalize the flow field by subtracting a constant value, f ., such that the projected
velocities of the two surfaces have equal magnitudes and opposite sips, and then multiply
by a positive scale factor, f,, such that the magnitudes will be normalized to I and -1. (eg.,
f low.' = f, (f low. - f 8 )). The resulting step edges can have one of two possible shapes,
depending upon whether the surface to the left is, after scaling and normalizing, moving to
the left or to the right (see figure 5).

When the two possible velocity functions are convolved with a Gaussian blurring ker-
nel, the resulting functions are shown in figures Sa and b. The Laplacian of these functions

in the direction perpendicular to the edge is equal to the second derivative, and is shown in
figures 5c and d. These two cases may be described analytically as follows:

-' CASE I

Given the step function
I, x<0 "

S W = -: (3),.

Convolve s (x) with a Gaussian blurring function g (x).

h(x) - *s (4)

DX<O-!]

Let s(x) -2u(x)+Iwhereu(x) X> . Then

h(x) = 1 2- 2 ," e ', (5)

h (x) = - (6)

Therefore

-.-.

-1 * °** *
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Dynamic Occlusion Analysis

h"(X)<0 when x<0

h"(Z)> 0 when X >0 (7)

CASE 2

The step function for Case 2 is -s (z), where s (x) and u (x) are defined above:

h- e -z/2u (9)

Therefore

h"(x)> 0 when x < 0

h"(X) < 0 when x > 0

At some later time t, the entire second derivative curve h -(x) will have shifted right
or left, depending upon whether the edge moves with the surface moving to the right or
left. Based upon the analysis above, in case 1 if the left surface is occluding, the second
derivative curve will be moving to the right and the sign at the origin will become negative,
while if the right surface is occluding, the curve will be moving left and the sign at the ori-
gin will be positive. In case 2, if the left surface is occluding, the curve will be moving to
the left and the sign at the origin will be negative, while if the right surface is occluding,
the curve will be moving to the right and the sign at the origin will be positive. Note that in
both cases, when the left surface is the occluding surface, the sign at the origin will become
negative, and when the right surface is occluding, the sign at the origin will become positive.
This is illustrated in figures Se and f. In the original, un-rotated coordinate system, this is
equivalent to stating that at time t the direction normal to the edge for which the second
directional derivative of optical flow is positive, evaluated at the location of the edge at t0,
points toward the occluding surface. This analysis may be extended to the general case
where the original step function has not been normalized. The direction of the second
derivative at tI must now, however, be evaluated at the point (z 0 ,y0 ) + (t, - to)f.. (As
f. is the average flow of the surfaces on either side of the boundary, this point may be
thought of as lying half way between the two possible image locations of the boundary at
time t 1).

In practice, difficulties may arise for very large differential flows between the two sur-
faces. The second derivative function h "(x) approaches zero away from the zero crossing.
Noise sensitivity of the classification technique is likely to increase when the value is small.

It is useful to determine a guideline for the size of the Gaussian blurring kernel to insure
that the curve will be observed near its extrema, where the sign is more likely to be correct.
The form of the function h "(x) may be siuplified by substitution for analysis purposes. Let

b = and c = - ' (12)

Then, in case 1,

h"(x) = 1(b) = cb eb (13)

.13-
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:' "(b) = c *-b (1-2b 2) (14)

1b C(-

The extrema of f (b) will occur at b = and the extrema of h "(z) occur at
.V5

X - ±a. The ratio

-0.12 (5
h "(a')

indicates that at ± 2.7a the magnitude of h (x) is twelve percent of its magnitude at the
extrema, and thus is relatively close to zero. If the noise is such that the sign will be accu-
rate when the expected Laplacian value is at least 10 percent of the extrema value, then a
Gaussian blurring kernel should be used of standard deviation at least 1/2.7 of the maximum
expected magnitude of flow of the edge. For cases where the noise presents more of a prob-
lem, a Gaussian of larger standard deviation should be used. The analysis for case 2 can be
performed similarly, with the same result.

The algorithm is implemented as follows: Optical flow fields are obtained for two tem-
porally adjacent image pain. Approximation to the Laplacians of Gaussian blurred versions
of these flow fields are calculated by computing the difference of the flow fields convolved

* with two different Gaussian kernels. (Again, the component-wise Laplacian is used.) As
before, edge points are found in the first flow field by searching for vector reversals in the
Laplacian of the field. At such points, the value of the smoothed flow field obtained from

-' the larger of the Gaussian kernels is considered to approximate the average flow of the two
surface regions on either side of the edge. This average flow is used to find the appropriate
offset to add to the edge location to find P, a point midway between the two possible edge
locations in the second Laplacian field. Next, the direction perpendicular to the edge point
is estimated by finding the direction of greatest change in the Laplacian of the first flow
field. The Laplacian of the second flow field at the point P is then examined. The Lapla-
cian component in the second field perpendicular to the edge orientation points toward the
occluding surface.

An example of this technique applied to an image sequence is shown in figure 6. The
leopard translates from left to right approximately equally between frames 1, 2 and 3 in
figure 6a. The edge points shown in figure 6b are obtained as described in section 2. At

-.. each edge point, an offset based on the flow vector from the smoother version of the field at
that point is added to the location of the edge point. The resulting location is examined in
the Laplacian of the second flow field. The component of this Laplacian perpendicular to
the edge will point toward the occluding surface. Shown in figure 6c are the edge points,
each of which has an associated line segment. The line segment projects in the direction of
the occluding surface, as determined by the algorithm. The correct classification is made

" for all except a few points at the bottom of the edge. In this region, several nearby tokens
* were matched in one frame pair but not the other, significantly affecting the smoothed flow

.. fields in the neighborhood of the boundary.
S..

4. ROTATIONAL MOTION.

., .~ Rotation in depth introduces several complexities for the analysis of optical flow at
occlusion boundaries. The first is an unexpected corollary of (2): In certain situations, there
is no discontinuity in flow at occlusion boundaries. This occurs for pure rotation in depth

.-14-
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U,,(a)
rRAME 1 FRAM1E 2 FRAM1E 3

(b) (C)

.1- Figure 6. a) Image sequence. b) Detected boundary overlaid onto first frame of sequence.

'I9. c) Identification of occluding surface. Each edge point has a line segment projecting from it

towards the occluding surface.
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of objects that are circularly symmetric, rotating about their axis of symmetry, and other-
wise stationary with respect to the background. In such cases, the image of the boundary
over time maintains a fixed position with respect to the background. As a consequence of

* (2), the projected surface flows on either side of the boundary are identical and are the
same as the boundary flow itself. Fortunately, the zero-crossing based boundary detection

* method is still usually applicable, though the detected location of the boundary may be dio-
placed.

The second complication involves the determination of occluding surfaces. Rotations
* in depth produce a dynamic self occlusion -- the rotating object occludes sections of itself

over time. In the situation described in the previous paragraph, self occlusion is the only
-. dynamic occlusion occurring. In these circumstances, the relationship in equation (2) is of

no direct value in identifying the occluding surface. No information is available on which
side of the boundary corresponds to a true occluding surface. If the rotating object is also
translating relative to the background, if the object is not rotationally symmetric, or if it is
not rotating around an axis of symmetry, then equation (2) will in principal correctly iden-

* tify the occluding surface. Difficulties arise in practice, however, because the algorithm
given above depends on surface flow in the neighborhood of the boundary, not just at the
edge. In the presence of rotation in depth, misclassifications are likely, particularly if no

* translation is occurring.

Rotation also complicates inferences about relative depth based on the analysis of
* occlusion boundaries. For translational motion, the occluding surface on one side of a

boundary is necessarily in front of the occluded surface. For rotation in depth, the
occluded and occluding surfaces are on the same side of the boundary, and no definitive
information is available about the surface on the other side of the boundary. ([III shows an

* example in which a non-rotating surface on one side of a boundary is in front of a rotating
surface on the other side of the boundary.) One approach to determining the actual relative
depth involves first determining whether or not rotation in depth is actually occurring.
Such an analysis is beyond the scope of this paper (see [12D. As an alternative, an analysis
of surface regions that are appearing or disappearing due to dynamic occlusion gives infor-

* mation about the occluded surfaces at a boundary [11]. The method described here gives
information about the occluding surface. By combining the two approaches, self occlusion is

* recognized by noting a boundary where one side is marked as both occluding and occluded.
It may be relevant that several investigators have found an ambiguity in human vision in dis-
tinguishing between translation at constant depth and rotation in depth [13,14]. Certain pat-
terns, when viewed monocularly, can be seen as either rotation in depth in front of a back-
ground (figure 8a) or translation at constant depth behind an aperture (figure 8b).

4. S. CONCLUSION.

Motion-based boundary detection is sensitive only to depth discontinuities and/or
I object boundaries. Thus, unlike intensity based edge detection, all detected edge points are
P of direct significance to the interpretation of object shape. On the other hand, significant
4 edges will not be detected unless there is perceived motion between the surfaces on either
4 side. Motion-based analysis offers another significant advantage. In most cases, the side of

a boundary corresponding to the occluding surface can be identified. As we have shown,
* this is possible for general motion, not just for a sensor moving through an otherwise static

environment. This determination is quite difficult using only static information, and has
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received only little attention (eg. [151).

APPENDIX 1.

The following is an analytical analysis of the appropriateness of using zero crossings in
the component-wise Laplacian of a flow field to detect contours of maximal rate of change
in the flow field.

Theorem.

Let V be a twice continuously differentiable vector field, let N be an open neighbor-aV
hood containing the origin such that -- is constant on N, let L be the intersection of

- i 12
N and the y axis, and let a be a unit vector. Then 1V V- o i has an extremum in the x
direction on L if and only if a, (a. V V). V 2 V has a zero crossing on L.

Justification.

* The magnitude of the directional derivative in the a direction is
VV iv =--(V V u. 0)2 + (V V6)

[ 12-V* V~12 + O' aYz (17)ax el ax 13Y
I2 11,1 I2 12 ra ovX ov, av v 1

+::j 12+ JJ + 2 , - + (Ox

'toyj [oy j

x ' xOx a ax ay

1 2  + [y 2

O2 Ox Ox2 a av + 2 v V

1 -1 +2 y Ox12 19

The partial derivative of this quantity can be simplified to
IV' I . u :,2 2 i; x L 2a yiv 2

,I ax." ax•- - 2 lay u,2 " - (20)

LX[ V  OV] z-  (21)

•-2 u,(-V V)- -- (22

_',since 8V is constant on N. For the same reason -LYv  and -V.

OY Oy Ox

-17-
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12
Theref ore 2- V V* - ai has a zero crossing whenever a, (on- V V) - V 2 V does. But

I 12 ax112
IV V. -I has an extremum in the x direction whenever I V V - u Ihas a zero cross-

ins.

Whenever the Laplacian V 2 V has a zero crossing, so must u, (U. V V)* V 2 V, except

when a, (o*- V V) = 0, which is unlikely because real edges are places with steep gradients.
Zero crossings in the Laplacian will therefore almost always correspond to extrema in the

* -. magnitude of the directional derivative, with respect to almost all directions. It is possible
for the magnitude of the directional derivative to have an extremum without a zero in the
Laplacian, because the component at right angles to the preferred direction defined by

a.- V V need not be small. If there is no variation of the field parallel to the edge, then the
steepest directional derivative occurs in the direction normal to the edge, and if the varia-
tion parallel to the edge is much less than that normal to the edge, as we expect for most
images, then the steepest directional derivative occurs in a direction nearly normal to the

. edge. If we choose u in the x direction, then o - V V will be parallel to av! , so that the

above theorem says the component of the Laplacian in the direction parallel to the
difference in the flow on both sides of the boundary will have a zero crossing. The Lapla-
cian can fail to have a direction reversal at an edge only if the component of the Laplacian
at right angles to the flow difference is not small, which occurs when the normal component
of the flow gradient at an edge is changing in direction more rapidly than it is changing in

- magnitude. Such situations do not appear to be common in real optical flows, and can occur
only when the unfiltered flow is changing appreciably in a neighborhood of the edge for at
least one of the two surfaces. For the case of a boundary between two surfaces with dis-
tinct uniform flows on each surface, the smoothed Laplacian has a directional zero crossing
in all directions except along the boundary. In that direction, the value of the smoothed
Laplacian is zero.

The extremum can be either a maximum or a minimum. A maximum is of course
desired, and minima are discarded in practice by requiring the slope of the zero crossing to
be sufficiently steep. While this is not a guaranteed test, it works in almost all cases because
of the Gaussian filtering applied to the images before the Laplacian is calculated. Mlinima in

-~ the gradient usually correspond to areas where the field is uniform, and due to the tails on
a Gaussian curve, gradients near the minima tend to be small, with small values for deriva-
tives of all orders.

V APPENDIX [1.

* This appendix contains the analytical analysis showing that the limit of surface flow is
equal to boundary flow for the rotation of smooth objects for orthographic projections.

* Any motion of a rigid body can be described by giving the trajectory of an arbitrary point
attached to the body and the instantaneous rotation about some axis passing through that
point. Define a set of Cartesian axes (X, Y, Z) with the origin at the distinguished point on
the body and with the Z axis along the axis of rotation, and let (r, 6, 4) be spherical coor-
dinates with respect to these axes. Let the orientations of the axes (X, Y, Z) be fixed with
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respect to the axes (x, y, z) of the image plane coordinates, so that the angular velocity of
an arbitrary rotation is the same in both coordinate systems. Let the surface of the body be
described by

r =R( - (t),4) (23)

where *(0) = 0, so that r = R(0, 4) at time t = 0. The parameter a = 0 - *(t) is the longi-
tudinal angle of a point fixed to the surface at t = 0, and points with constant values of a

and 4 rotate along with the suriace. Since 0 = a + W(), _ = d gives the angular velo-
dt

city of the object about the Z axis.

At some particular instant of time, let G be a generating point (r., 0., 4,.) and n be
the unit surface normal at G. Since G is a generating point and orthographic projection is
involved, n will be parallel to the image plane. The normal component of the flow for an
arbitrary point p = (r, 0, 4) fixed to the surface is

f.(p) =(fl xp).n=wR(0- ,40) Sin4 [-nx Sin +nr Cos 1 (24)

where 01 is the vector angular velocity, of magnitude w and oriented along the Z axis. The
orientations of 11 and n may be changing, but the analysis below is based on the instantane-
ous values of both quantities at some particular point in time.

The x axis in the image plane is oriented parallel to the constant unit vector a. Since
we are working with an orthographic projection, the x coordinate of the point p is

x = p. n = R(o- ,,)[p(o, ). n] (25)

[p (0, 4)n] =nx Sin 4 Cos 8 +u7 Sin 4Sin O +nz Cos 4 (26)

where p is the unit vector parallel to p. Since the generating point is on the horizon of the
object, x must have an extremum at the generating point for variations in both 0 and 4o.
This leads to

ax = o 8 (27)

=0=' 'ti_- A 42 [p(O, ). n]+R()- , L[p (, 4 ). n] (28)
a,6 a* a+

for 8 = 0s ,4 = 4. Let x. denote the x coordinate of the generating point. From (25) the
flow of the boundary is

Ndx _[

fb 1- R(0 - *, 4)[p(0, 4) ni (29)
dt d

d -" [p (i, 4)-a., [ 0,-)- ]
•t t a 0 dt 30)

[PR1+ - [(,) n].L
:+ -a. ~LL±, [p(e, 4). nj ,t + a,[ o,4).n] d

84l dt a+~e dt
evaluated at 0 = 6,, 4 = 4,. From (27), (28) and (26) we get

• " .. 19
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fb [p(0, )n] . R- [p (0, 4)-n] (31)
8t 0 d: 80

=wR(Os s,)Sin i n Sm O + nr COs 09] (32)

=f(O, o) (33)

using (24) and A = w. This establishes (2) for arbitrary orientations of the axis of rota-
dt

tion with respect to the image plane, assuming an orthographic projection.
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